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Spatial coherence in an open flow model
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A one-dimensional asymmetrically coupled map lattice model is studied extensively by numerical simula-
tions. It is shown that with open boundary conditions, the one-way coupled logistic lattices can exhibit spatially
uniform, but temporally chaotic states that are stable in the presence of low-level noise. It is found that the
spatially uniform unstable steady state of the system can be stabilized via single point control or pinning at the
boundary site. In the spatially coherent and temporally chaotic regimes, a local finite disturbance may generate
a propagating localized turbulent patch, which grows in size as it is swept downstream.
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Coherent modes in spatially extended chemical, biolo
cal, and fluid systems have been the focus of consider
interest @1,2#. Theoretical studies of these phenomena
clude systems of coupled limit-cycle oscillators@1#, the com-
plex Ginzberg-Landau equations@1–3#, and the coupled map
lattices@4,5#. Recently, the coexistence of spatial coheren
and temporal chaos has been observed in one-dimens
coupled map lattices with asymmetrical couplings@6#.
Asymmetrically coupled map lattices~ACMLs!; in particular
the one-way coupled map lattices~OCMLs!, have been pro-
posed for modeling physical open-flow systems, and m
interesting dynamical features have been revealed@7–11#. It
has been shown that ACMLs or OCMLs may capture cert
features of real open-flow systems, if appropriate bound
conditions are assumed. Many properties are found for th
systems, such as noise-sustained structure, selective am
cation of low-level external noise, and spatial synchroni
tion of chaotic elements in spatially extended systems.

In this paper, we report some features of the o
dimensional asymmetrically coupled map lattice, which
defined by

xn11
i 5~12g12g2! f ~xn

i !1g1f ~xn
i 211g2f ~xn

i 11!, ~1!

wherexn
i is the amplitude associated with thei th lattice point

at time stepn, andi 51,2, . . . ,N, whereN is the lattice size.
The local mapping functionf (x) is chosen to be the logisitic
map, f (x)512ax2, with the nonlinear parametera chosen
well within the chaotic regime. It is further assumed that t
nearest-neighbor coupling constants obeyg1.g2>0. When
g250, Eq. ~1! reduces to the one-way coupled map lattic
For open-flow systems, the boundary conditions w
strongly influence the dynamical behavior of the system.
consider the following open boundary condition:

xn11
1 5~12g2! f ~xn

1!1g2f ~xn
2!,

xn11
N 5~12g1! f ~xn

N!1g1f ~xn
N21!.
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For the ACML systems, it has been shown that for a w
range of the couplingsg1 andg2 , and with the open bound
ary condition, the system exhibits a stable, spatially hom
geneous, and temporally chaotic state with a finite cohere
length due to the numerical noise. As is shown in Ref.@6#,
the coherence length increases with numerical precis
Such a sensitivity to the numerical noise indicates that
spatially coherent state is unstable to dynamical local no
We studied the ACML model through extensive numeric
simulations. We found that both the asymmetry in the int
actions and the open boundary condition are necessary
requisites for the emergence of long-range-ordered cha
states. Our numerical results show that the coupling cons
g2 , which represents the backward diffusion, plays a cruc
role in the spatial amplification of small perturbations. F
example, the finiteness of the coupling constantg2 , no mat-
ter how small it is, will drastically enhance the effects of t
noise, which in turn, will create a synchronized state w
finite coherence length. Thus, the conclusions drawn for
case ofg2Þ0 are not generally applicable for the OCM
systems withg250, and vice versa.

Controlling spatiotemporal chaos in spatially extend
nonlinear systems with symmetrical coupling remains a ch
lenging problem. In general, the stabilization of unstable s
tiotemporal states in symmetrically coupled, spatially e
tended systems usually requires distributed controlle
which seems to be barely practical. Recently, the sing
point control of spatiotemporal chaos has been achieved
several model systems that are convectively unstable@15–
19#. Here we focus our attention on the ACML systems. T
presence of backward diffusion may generally have two
pacts on the dynamical behavior of the systems under c
sideration. On the one hand, it may certainly enhance
noise effects that will destroy the spatial coherent state a
on the other hand, it may also be used to generate ce
noise-induced and/or noise-sustained dynamical behav
This implies that the presence of the backward diffusion m
enhance the effects of the noise under some circumsta
and may also suppress the amplification under other co
tions. Without the backward diffusion term~as for the
R2499 © 1998 The American Physical Society
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OCML systems!, it is still possible that the noise may mak
the spatially uniform but temporally chaotic states unstab

We begin with the control of spatiotemporal chaos in t
ACML systems. For the OCML systems, it is well know
that the unstable spatially uniform and temporally perio
states may be stabilized by fixing appropriate temporal p
ods at the first site of the OCML@18#. On the other hand
Kaneko found that by fixing the first site to an arbitra
constant value, many different spatiotemporal patterns
be observed. Nevertheless, no stabilization of spatiotem
rally uniform states is reported. We performed numeri
simulations on the OCMLs and found that the stabilization
spatiotemporally uniform states may be achieved by fixing
stabilizing the first site to the fixed point of the logistic ma
In the following numerical discussion of single-point contr
of the spatiotemporal chaos, we first let the system ope
freely, and then at the iteration step 303100 we turn on the
control and observe its influence on the dynamical beha
of the system under study. Figure 1 shows the stabili
spatiotemporal uniform state obtained by pinning the fi
site at the fixed pointxF , wherexF stands for the fixed poin
of the logistic map. That is, the existence of the spatial
herence state does not imply that such a coherent state c
controlled in a spatiotemporally uniform state. For examp

FIG. 1. Space-time evolution of the synchronization front. Ite
tions of Eq.~1! are plotted every 100 steps, starting from random
chosen initial conditions. The system size isN5400; ~a! a52.0,
g150.75, andg250; ~b! a51.8, g150.5, andg250.
.
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at a51.9 andg150.5, we have a spatially coherent sta
with temporal chaos that cannot be stabilized to the fixe
point state by using single-point control.

The diffusive coupling plays a very delicate role in th
dynamical behavior of the coupled map lattices. When
system is in a spatially uniform state, the diffusion may te
to maintain the homogeneity, while if the system is alrea
in a nonuniform state, it is also possible that the diffusi
may enhance the effects of the noise and destroy the spat
uniform state. In what follows, we report the numeric
analysis of the ACML systems. In particular, we will chec
how the small backward diffusion (0Þg2!1) influences the
dynamical properties of the ACMLs. In Fig. 2, we show th
a small backward diffusion can help stabilize the spatiote
porally uniform state. The system parameters area52, N
5400, g150.678, andg250.01. In comparison with the
OCMLs with the same parameter values, except thatg2
50, it is noted that the introduction of a backward diffusio
term seems to suppress the spatial amplification of the n
and makes the one-site control of spatiotemporal chaos p
sible. Forg2 large, however, neither synchronized nor co
trolled states are observed, indicating that different mag
tudes of the backward diffusions may play different roles

- FIG. 2. ~a! Synchronized state with a finite coherence leng
before the first site is pinned at the fixed point, and the spa
bifurcation resulting from fixing the first site atxF , wheng250;
~b! the propagation of the stabilizing and synchronizing fronts wh
a small backward diffusion is added to the OCML system.
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the development of the spatiotemporal waves. It should
emphasized that the mechanisms that lead to the propag
of synchronizing force and controlling force are quite diffe
ent. This can be seen clearly in the case ofa51.9, g1

50.75, andg250, where the coherence wave can propag
throughout the entire system, but the stabilizing wave c
not. In this case, the addition of backward diffusion m
destroy the spatial coherence but does not affect the sin
point control of spatiotemporal chaos. Roughly speaking
for OCML systems withg250 the unstable fixed-point stat
cannot be stabilized by controlling the first site, then by
troducing a small backward diffusion control of spatiote
poral chaos may be achieved.

To test the stability of the spatially uniform states, w
introduce a localized disturbance into the system under c
sideration. We have found that the small disturbances die
quickly. However, the sufficiently large, localized distu
bance can propagate downstream. If the system operat
the periodic regime, then the perturbed state remains lo
ized as it propagates, while if the system operates at
chaotic regime, the perturbed state becomes a propag
localized patch whose size grows as it is swept downstre
because the disturbance travels at a velocity that is la
than that of the synchronizing front~see Fig. 3!. We ana-
lyzed the dependence of the propagation velocities of
controlling waves and the disturbance waves on the sys
parameters. We found that the localized disturbances pr
gate at a velocity~denoted byvd) that is approximately equa
to the intrinsic velocity of the coupled map lattices, i.e.,vd

51 site/step. While the velocities of the controlling and t
synchronizing fronts, denoted byvp and vs , respectively,
depend on all system parameters such as the nonlineara
and the diffusive coupling constantsg1 and g2, in general,
the velocitiesvp andvs increase withg1 , and decrease with
a andg2 . Thus, it is natural to expect that forg1 sufficiently
large anda sufficiently small, one may observe the propag
tion of solitonlike disturbance patches.

The growing spatiotemporal spots observed in our mo
systems are similar to the propagating localized turbu
flashes in the flow of water down a pipe@20#, where the slugs
in the fluid systems are surrounded by nonturbulent fluid
our case the spatiotemporal chaotic patches coexist with
spatially uniform, temporally chaotic surroundings in a sy
chronized chaotic state and coexist with the spatially u
form, temporally periodic motions in a controlled state.

In conclusion, we have shown that with open bound
condition the OCML systems may exhibit long-range spa
coherence and temporal chaos in the presence of nume
noise. We found that this spatially uniform state is stable
small perturbations. The emergence of the spatially homo
neous and temporally chaotic state is explained by a ch
synchronization mechanism. We have also revealed tha
certain values of system parameters, the unstable steady
of both ACML and OCML systems may be stabilized by t
application of single-point control techniques at the upstre
edge of the system under consideration. No straightforw
relation between the propagation of the synchronizing
controlling front is found. Our results may be regarded a
complement to the properties of ACML and OCML system
discussed in@6,9,12–14#.
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It is interesting to notice that in the spatial coherence s
a sufficiently large localized perturbation may propagate
form a traveling spatiotemporal chaos slug or a travel
pulse or wave front, depending on whether the temporal
havior is chaotic or periodic. Since the desynchronizing fo
travels at a velocity greater than that of the synchroniz
force, the turbulent slug grows in size as it is swept dow
stream.

From our numerical simulation results, we see that
backward diffusion of the perturbation@characterized byg2

Þ0 in Eq. ~1!# may enhance the amplification of noise, r
sulting in a synchronized state with a finite coherence len
in one case, and may suppress the effects of noise in favo
the propagation of a stabilizing front in the other. Therefo
it will be worthwhile to characterize the noise effects qua
titatively in open-flow systems. Since the influence of t
diffusive coupling on the dynamical behavior of spatia
extended systems with convective instabilities is rather in
cate, it is not clear as to whether or not the one-dimensio
results could be generalized to ACMLs in higher dimensio

FIG. 3. Time evolution of the initial pointlike disturbance o
finite amplitude at the left-hand boundary in a spatially unifo
state. The system parameters are~a! N5400, a52, g150.75, and
g250; ~b! N5400, a52, g150.8, andg250.01. The amplitude
of the pointlike disturbance isd50.1, and that is switched on for
duration of five iteration steps. The states of the array are sh
every ten iterations.
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