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Spatial coherence in an open flow model
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A one-dimensional asymmetrically coupled map lattice model is studied extensively by numerical simula-
tions. It is shown that with open boundary conditions, the one-way coupled logistic lattices can exhibit spatially
uniform, but temporally chaotic states that are stable in the presence of low-level noise. It is found that the
spatially uniform unstable steady state of the system can be stabilized via single point control or pinning at the
boundary site. In the spatially coherent and temporally chaotic regimes, a local finite disturbance may generate
a propagating localized turbulent patch, which grows in size as it is swept downstream.
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Coherent modes in spatially extended chemical, biologifor the ACML systems, it has been shown that for a wide
cal, and fluid systems have been the focus of considerabl@ange of the couplingy, andv,, and with the open bound-
interest[1,2]. Theoretical studies of these phenomena in-ary condition, the system exhibits a stable, spatially homo-
clude systems of coupled limit-cycle oscillat¢l, the com-  geneous, and temporally chaotic state with a finite coherence
plex Ginzberg-Landau equatiofis-3], and the coupled map |ength due to the numerical noise. As is shown in R6f,
lattices[4,5]. Recently, the coexistence of spatial coherencene coherence length increases with numerical precision.
and temporal chaos has been observed in one-dimensiong|;ch a sensitivity to the numerical noise indicates that the

coupled map lattices with asymmetrical couplingl].  gpatially coherent state is unstable to dynamical local noise.
Asymmetrically coupled map latticéACMLs); in particular  \ye stydied the ACML model through extensive numerical

the one-way COUPIEd map latticé®CMLs), have been pro- simulations. We found that both the asymmetry in the inter-

posed f_or fg‘)de"f?g F?ysmal oEen-flgw systemséda?dlmanyictions and the open boundary condition are necessary pre-

L?;grﬁzgggshgcviw;f; Atéal\t/lul_rgsér ?)Vng_esrr]nglvggpture].c;rtai nrequisites for the emergence of long-range-ordered chaotic
tates. Our numerical results show that the coupling constant

features of real open-flow systems, if appropriate boundar hich he backward diffusi | ial
conditions are assumed. Many properties are found for thos&2" which represents the backward diffusion, plays a crucia

systems, such as noise-sustained structure, selective amplf2l® in the spatial amplification of small perturbations. For

cation of low-level external noise, and spatial synchroniza®x@mple, the finiteness of the coupling constgst no mat-

tion of chaotic elements in spatially extended systems.  ter how small it is, will drastically enhance the effects of the
In this paper, we report some features of the one_noise, which in turn, will create a Synchronized state with

dimensional asymmetrica”y Coup|ed map lattice, which isﬁnite coherence length. Thus, the conclusions drawn for the

defined by case ofy,#0 are not generally applicable for the OCML
systems withy,=0, and vice versa.
XirHl:(]__yl_fy2)f(xin)+‘ylf(xirrl_g_‘yzf(xir]*l), 1) Controlling spatiotemporal chaos in spatially extended

nonlinear systems with symmetrical coupling remains a chal-
lenging problem. In general, the stabilization of unstable spa-

at time stem, andi=1,2, ... N, whereN is the lattice size. tiotemporal states in symmetrigally cpupled, spatially ex-
The local mapping functiofi(x) is chosen to be the logisitic ten.ded systems usually requires distributed contrqllers,
map, f(x)=1—ax, with the nonlinear parameter chosen which seems to be barely practical. Recently, the single-
well within the chaotic regime. It is further assumed that thePCint control of spatiotemporal chaos has been achieved for
nearest-neighbor coupling constants obgy y,=0. When several model systems that are convectively unstpife-
v,=0, Eq. (1) reduces to the one-way coupled map Iattice.lg]' Here we focus our a.ttenpon on the ACML systems. T_he
For open-flow systems, the boundary conditions willPrésence of backward diffusion may generally have two im-

strongly influence the dynamical behavior of the system. w@acts on the dynamical behavior of the systems under con-
consider the following open boundary condition: sideration. On the one hand, it may certainly enhance the

noise effects that will destroy the spatial coherent state and,
1 1 2 on the other hand, it may also be used to generate certain
S“*l_(l_72)f(§”)+72f(ﬁ[)1’ noise-induced and/or noise-sustained dynamical behaviors.
Xny1= (1= y) FOxp) + v f (X ). This implies that the presence of the backward diffusion may
enhance the effects of the noise under some circumstances
and may also suppress the amplification under other condi-
*Electronic address: jiang@tepetl.uam.mx tions. Without the backward diffusion ternfas for the

Wherexin is the amplitude associated with thth lattice point
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FIG. 1. Space-time evolution of the synchronization front. ltera-  FIG. 2. (a) Synchronized state with a finite coherence length
tions of Eq.(1) are plotted every 100 steps, starting from randomly before the first site is pinned at the fixed point, and the spatial
chosen initial conditions. The system sizeNs=400; (a) a=2.0, bifurcation resulting from fixing the first site &, wheny,=0;
v,=0.75, andy,=0; (b) a=1.8, y,=0.5, andy,=0. (b) the propagation of the stabilizing and synchronizing fronts when

a small backward diffusion is added to the OCML system.
OCML systemy it is still possible that the noise may make
the spatially uniform but temporally chaotic states unstableat a=1.9 andy;=0.5, we have a spatially coherent state

We begin with the control of spatiotemporal chaos in thewith temporal chaos that cannot be stabilized to the fixed-
ACML systems. For the OCML systems, it is well known point state by using single-point control.
that the unstable spatially uniform and temporally periodic The diffusive coupling plays a very delicate role in the
states may be stabilized by fixing appropriate temporal peridynamical behavior of the coupled map lattices. When the
ods at the first site of the OCM[18]. On the other hand, System is in a spatially uniform state, the diffusion may tend
Kaneko found that by fixing the first site to an arbitrary to maintain the homogeneity, while if the system is already
constant value, many different spatiotemporal patterns caift & nonuniform state, it is also possible that the diffusion
be observed. Nevertheless, no stabilization of spatiotempanay enhance the effects of the noise and destroy the spatially
rally uniform states is reported. We performed numericaluniform state. In what follows, we report the numerical
simulations on the OCMLs and found that the stabilization ofanalysis of the ACML systems. In particular, we will check
spatiotemporally uniform states may be achieved by fixing ohow the small backward diffusion (0y,<1) influences the
stabilizing the first site to the fixed point of the logistic map. dynamical properties of the ACMLs. In Fig. 2, we show that
In the following numerical discussion of single-point control @ small backward diffusion can help stabilize the spatiotem-
of the spatiotemporal chaos, we first let the system operatgorally uniform state. The system parameters are2, N
freely, and then at the iteration step>3000 we turn on the =400, y;=0.678, andy,=0.01. In comparison with the
control and observe its influence on the dynamical behavioODCMLs with the same parameter values, except that
of the system under study. Figure 1 shows the stabilized=0, it is noted that the introduction of a backward diffusion
spatiotemporal uniform state obtained by pinning the firsterm seems to suppress the spatial amplification of the noise
site at the fixed poinkg, wherexg stands for the fixed point and makes the one-site control of spatiotemporal chaos pos-
of the logistic map. That is, the existence of the spatial cosible. Fory, large, however, neither synchronized nor con-
herence state does not imply that such a coherent state cantvelled states are observed, indicating that different magni-
controlled in a spatiotemporally uniform state. For examplefudes of the backward diffusions may play different roles in
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the development of the spatiotemporal waves. It should bt so
emphasized that the mechanisms that lead to the propagatic |
of synchronizing force and controlling force are quite differ- M#AWMWW
ent. This can be seen clearly in the caseasfl.9, v, or MWMWM“M
=0.75, andy,=0, where the coherence wave can propagate 3 e Ay A
throughout the entire system, but the stabilizing wave can g 30 m“qWWWW “
not. In this case, the addition of backward diffusion may E o5 [ WWM =
destroy the spatial coherence but does not affect the single & el B
point control of spatiotemporal chaos. Roughly speaking, if § ** eyl
for OCML systems withy,=0 the unstable fixed-point state < 15 %%%W%ﬂ&
cannot be stabilized by controlling the first site, then by in- 10
troducing a small backward diffusion control of spatiotem- s w
poral chaos may be achieved. o : : . . ‘ . .
To test the stability of the spatially uniform states, we 0 50 100 150 200 250 300 350 400
introduce a localized disturbance into the system under cor (@ SPACE
sideration. We have found that the small disturbances die ot 5
quickly. However, the sufficiently large, localized distur- ol oy s
bance can propagate downstream. If the system operates —— HMH'! ,‘ S
the periodic regime, then the perturbed state remains loca ~ “°F—— Wm*mwm
ized as it propagates, while if the system operates at th  35[—— WMWW“ V“
chaotic regime, the perturbed state becomes a propagatir ¢ 5= ﬁ%‘mﬁmﬂ !
localized patch whose size grows as it is swept downstrean 8 —— WMWM i @
because the disturbance travels at a velocity that is large & *° — ‘WWW 1 2
than that of the synchronizing frorisee Fig. 3. We ana- & 20— M"MM‘ : &
lyzed the dependence of the propagation velocities of the % 15— W
controlling waves and the disturbance waves on the syster ;= Ty
parameters. We found that the localized disturbances prop: 5 [l :
gate at a velocitydenoted by 4) that is approximately equal W

to the intrinsic velocity of the coupled map lattices, i®y, % 50 100 150

=1 site/step. While the velocities of the controlling and the
synchronizing fronts, denoted hy, andvg, respectively,

200 250 300 350 400
SPACE

depend on all system parameters such as the nonlinearity FIG. 3. Time evolution of the initial pointlike disturbance of
and the diffusive coupling constantg and vy,, in general, finite amplitude at the left-hand boundary in a spatially uniform
the velocitiesv , andv increase withy,, and decrease with state. The system parameters @eN=400,a=2, y;=0.75, and

a andvy,. Thus, it is natural to expect that for, sufficiently ~ v,=0; (b) N=400,a=2, y,=0.8, andy,=0.01. The amplitude
large anda sufficiently small, one may observe the propaga—Of the pointlike disturbance i§=0.1, and that is switched on for a
tion of solitonlike disturbance patches. duration of five iteration steps. The states of the array are shown

The growing spatiotemporal spots observed in our modefVvery ten iterations.
systems are similar to the propagating localized turbulent

flashes in the flow of water down a pip20], where the slugs It is interesting to notice that in the spatial coherence state
in the f|UId SyStemS are Surrounded by nonturbulent f|UId ||'h Sufficient|y |arge |0ca|ized perturbation may propagate to
our case the spatiotemporal chaotic patches coexist with thgym a traveling spatiotemporal chaos slug or a traveling
spatially uniform, temporally chaotic surroundings in a syn-pjse or wave front, depending on whether the temporal be-
chronized chaotic state and coexist with the spatially uniy5yior is chaotic or periodic. Since the desynchronizing force

form, temporally periodic motions in a controlled state.
In conclusion, we have shown that with open boundaryf
condition the OCML systems may exhibit long-range spatial
. . stream.

coherence and temporal chaos in the presence of numerica
noise. We found that this spatially uniform state is stable t

small perturbations. The emergence of the spatially homog

travels at a velocity greater than that of the synchronizing
orce, the turbulent slug grows in size as it is swept down-

From our numerical simulation results, we see that the
ggackward diffusion of the perturbatidicharacterized by,

neous and temporally chaotic state is explained by a chacs 0 in Ed.(1)] may enhance the amplification of noise, re-
synchronization mechanism. We have also revealed that fc_ﬁultlng in a synchronized state with a finite cohe_renf:e length
certain values of system parameters, the unstable steady st#le®n€ case, and may suppress the effects of noise in favor of
of both ACML and OCML systems may be stabilized by thethe propagation of a stabilizing front in the other. Therefore,
application of single-point control techniques at the upstreanit Will be worthwhile to characterize the noise effects quan-
edge of the system under consideration. No straightforwarétatively in open-flow systems. Since the influence of the
relation between the propagation of the synchronizing andliffusive coupling on the dynamical behavior of spatially
controlling front is found. Our results may be regarded as @&xtended systems with convective instabilities is rather intri-
complement to the properties of ACML and OCML systemscate, it is not clear as to whether or not the one-dimensional
discussed ir6,9,12—14. results could be generalized to ACMLs in higher dimensions.
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